Complex Analysis: Resit Exam

Aletta Jacobshal 02, Thursday 13 April 2017, 18:30-21:30
Exam duration: 3 hours

Instructions - read carefully before starting

- Write very clearly your full name and student number at the top of the first page of your exam sheet and on the envelope. Do NOT seal the envelope!
- Solutions should be complete and clearly present your reasoning. If you use known results (lemmas, theorems, formulas, etc.) you must explicitly state and verify the corresponding conditions.
- 10 points are "free". There are 6 questions and the maximum number of points is 100 . The exam grade is the total number of points divided by 10 .
- You are allowed to have a 2-sided A4-sized paper with handwritten notes.

Question 1 (30 points)

Consider the function

$$
f(z)=z e^{i z}
$$

(a) (8 points) Prove that

$$
f(z)=e^{-y}(x \cos x-y \sin x)+i e^{-y}(y \cos x+x \sin x),
$$

where $z=x+i y$.

Solution

We compute

$$
\begin{aligned}
f(z) & =z e^{i z}=(x+i y) e^{i(x+i y)}=(x+i y) e^{i x-y} \\
& =e^{-y}(x+i y)(\cos x+i \sin x) \\
& =e^{-y}(x \cos x-y \sin x)+i e^{-y}(y \cos x+x \sin x) .
\end{aligned}
$$

(b) (8 points) Prove, using the Cauchy-Riemann equations, that $f(z)$ is entire.

Solution

Let $u=e^{-y}(x \cos x-y \sin x)$ and $v=e^{-y}(y \cos x+x \sin x)$. Then

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=e^{-y}(\cos x-x \sin x-y \cos x), \\
& \frac{\partial v}{\partial y}=-e^{-y}(y \cos x+x \sin x)+e^{-y} \cos x=e^{-y}(-y \cos x-x \sin x+\cos x), \\
& \frac{\partial u}{\partial y}=-e^{-y}(x \cos x-y \sin x)-e^{-y} \sin x=-e^{-y}(x \cos x-y \sin x+\sin x), \\
& \frac{\partial v}{\partial x}=e^{-y}(-y \sin x+\sin x+x \cos x) .
\end{aligned}
$$

Since all the partial derivatives are continuous for all $x+i y \in \mathbb{C}$, and the Cauchy-Riemann equations hold, that is,

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x},
$$

for all $x+i y \in \mathbb{C}$, we conclude that the function $f(z)$ is entire.
(c) (6 points) Compute the derivative of $f(z)$.

Solution

$$
f^{\prime}(z)=\left(z e^{i z}\right)^{\prime}=e^{i z}+i z e^{i z}=(1+i z) e^{i z}
$$

(d) (8 points) Prove that the function

$$
u(x, y)=e^{-y}(x \cos x-y \sin x)
$$

is harmonic in \mathbb{R}^{2} and find a harmonic conjugate of $u(x, y)$.

Solution

The given function $u(x, y)$ is harmonic in \mathbb{R}^{2} because it is the real part of the entire function $f(z)$.
A harmonic conjugate for $u(x, y)$ is then the imaginary part of $f(z)$, that is,

$$
v(x, y)=e^{-y}(y \cos x+x \sin x)
$$

Question 2 (15 points)

Evaluate

$$
\mathrm{pv} \int_{-\infty}^{\infty} \frac{e^{i x}}{x^{2}+1} d x
$$

using the calculus of residues.

Solution

By definition,

$$
\begin{aligned}
I & =\operatorname{pv} \int_{-\infty}^{\infty} \frac{e^{i x}}{x^{2}+1} d x \\
& =\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{e^{i x}}{x^{2}+1} d x \\
& =\lim _{R \rightarrow \infty} I_{R}
\end{aligned}
$$

To compute this integral we consider the closed contour

$$
\Gamma_{R}=\gamma_{R}+C_{R}^{+}
$$

shown below.

We have

$$
\begin{aligned}
I_{R} & =\int_{-R}^{R} \frac{e^{i x}}{x^{2}+1} d x \\
& =\int_{\gamma_{R}} f(z) d z
\end{aligned}
$$

where

$$
f(z)=\frac{e^{i z}}{z^{2}+1}
$$

Therefore,

$$
\int_{\Gamma_{R}} f(z) d z=I_{R}+\int_{C_{R}^{+}} f(z) d z
$$

For $R>1$ we have

$$
\int_{\Gamma_{R}} f(z) d z=2 \pi i \operatorname{Res}(i)=\frac{\pi}{e}
$$

where we used that

$$
\operatorname{Res}(i)=\lim _{z \rightarrow i}(z-i) \frac{e^{i z}}{(z-i)(z+i)}=\lim _{z \rightarrow i} \frac{e^{i z}}{(z+i)}=\frac{e^{-1}}{2 i}=\frac{1}{2 i e}
$$

Moreover, since the degree of the denominator is 2 and we have an expression of the form $e^{i z}$ in the numerator we can apply Jordan's lemma for C_{R}^{+}to get

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} f(z) d z=0
$$

Then taking the limit $R \rightarrow \infty$ we get

$$
\frac{\pi}{e}=I+0
$$

giving

$$
I=\frac{\pi}{e}
$$

Question 3 (10 points)

Use Rouché's theorem to show that, if $0<\varepsilon<7 / 4$, then the polynomial $P(z)=z^{3}+\varepsilon z^{2}-1$ has exactly 3 roots in the disk $|z|<2$.

Solution

The functions $f(z)=z^{3}-1$ and $h(z)=\varepsilon z^{2}$ are both analytic on and inside the circle $|z|=2$.
The number of zeros of $f(z)=z^{3}-1$ inside the disk $|z|<2$, counting multiplicity, is $N_{0}(f)=3$.
Moreover, on the circle $|z|=2$ we have

$$
|h(z)|=\varepsilon|z|^{2}=4 \varepsilon
$$

and

$$
|f(z)|=\left|z^{3}-1\right| \geq\left|\left|z^{3}\right|-1\right|=7
$$

Therefore, we can apply Rouché's theorem when $4 \varepsilon<7$, which implies $|h(z)|<|f(z)|$, to get for $P(z)=f(z)+h(z)$ that the number of its roots inside the disk $|z|<2$ is

$$
N_{0}(P)=N_{0}(f)=3
$$

Question 4 (15 points)

Represent the function

$$
f(z)=\frac{z}{z^{2}-1}
$$

(a) (8 points) as a Taylor series around 0 and find its radius of convergence;

Solution

$$
\begin{aligned}
\frac{z}{z^{2}-1} & =-z\left(1+z^{2}+z^{4}+z^{6}+z^{8}+\cdots\right) \\
& =-z-z^{3}-z^{5}-z^{7}-z^{9} \cdots
\end{aligned}
$$

where we used the geometric series for $1 /\left(1-z^{2}\right)$. The geometric series converges when $\left|z^{2}\right|<1$, that is, for $|z|<1$. Therefore, we conclude that the radius of convergence must be 1 .
Alternatively, the function $f(z)$ has singularities at $z= \pm 1$ which are both at a distance $|z|=1$ from 0 . Therefore, the radius of convergence is 1 .
(b) (7 points) as a Laurent series in the domain $|z|>1$.

Solution

Since $|z|>1$, that is $\left|1 / z^{2}\right|<1$, we have

$$
\frac{z}{z^{2}-1}=\frac{\frac{1}{z}}{1-\frac{1}{z^{2}}}=\frac{1}{z}\left(1+\frac{1}{z^{2}}+\frac{1}{z^{4}}+\frac{1}{z^{6}}+\cdots\right) .
$$

Therefore, for $|z|>1$ we can write

$$
\frac{z}{z^{2}-1}=\frac{1}{z}+\frac{1}{z^{3}}+\frac{1}{z^{5}}+\frac{1}{z^{7}}+\cdots
$$

Question 5 (10 points)

Consider the functions

$$
f(z)=\frac{\sin z}{z} \text { and } g(z)=e^{1 / z} .
$$

Determine the singularities of $f(z)$ and $g(z)$, and their types (removable, pole, essential; if pole, specify the order). Make sure to justify your answer.

Solution

The function $f(z)$ is singular at $z=0$. The Laurent series for $|z|>0$ is given by

$$
f(z)=\frac{1}{z}\left(z-\frac{z^{3}}{3!}+\cdots\right)=1-\frac{z^{2}}{3!}+\cdots .
$$

Since there are no negative powers we conclude that $z=0$ is a removable singularity.
The function $g(z)$ is singular at $z=0$. The Laurent series for $|z|>0$ is given by

$$
g(z)=1+\frac{1}{z}+\frac{1}{2!z^{2}}+\frac{1}{3!z^{3}}+\frac{1}{4!z^{4}}+\cdots
$$

Since there are infinitely many negative powers we conclude that $z=0$ is an essential singularity.

Question 6 (10 points)

Consider a function $f(z)$ such that $\operatorname{Re}(f(z)) \geq M$ for all $z \in \mathbb{C}$, where M is a real constant. Prove that if $f(z)$ is entire then it must be constant. Hint: consider the function $e^{-f(z)}$.

Solution

Let

$$
g(z)=e^{-f(z)} .
$$

If $f(z)$ is entire, then so is $g(z)$. Moreover, if we write $f=u+i v$, with $u=\operatorname{Re}(f(z))$, $v=\operatorname{Im}(f(z))$, then we have

$$
|g(z)|=\left|e^{-f(z)}\right|=\left|e^{-u-i v}\right|=\left|e^{-u}\right| \leq e^{-M} .
$$

Since $g(z)$ is a bounded entire function we conclude from Liouville's theorem that $g(z)$ is constant $c \in \mathbb{C}$.
Therefore, $e^{-f(z)}=c$. This implies $f(z)=-\log c+2 k(z) \pi i$, with $k(z)$ a \mathbb{Z}-valued function. Since $f(z)$ is continuous (being entire) we conclude that $k(z)$ is also continuous. The only continuous functions from \mathbb{C} to \mathbb{Z} are constant functions, therefore $k(z)=K$. Then $f(z)=$ $-\log c+2 K \pi i$ is a constant function.

