
Complex Analysis: Resit Exam
Aletta Jacobshal 02, Thursday 13 April 2017, 18:30–21:30

Exam duration: 3 hours

Instructions — read carefully before starting
- Write very clearly your full name and student number at the top of the first page of your exam sheet

and on the envelope. Do NOT seal the envelope!
- Solutions should be complete and clearly present your reasoning. If you use known results (lemmas,

theorems, formulas, etc.) you must explicitly state and verify the corresponding conditions.
- 10 points are “free”. There are 6 questions and the maximum number of points is 100. The exam grade is

the total number of points divided by 10.
- You are allowed to have a 2-sided A4-sized paper with handwritten notes.

Question 1 (30 points)

Consider the function

f(z) = zeiz.

(a) (8 points) Prove that

f(z) = e−y(x cosx− y sin x) + ie−y(y cosx+ x sin x),

where z = x+ iy.
Solution
We compute

f(z) = zeiz = (x+ iy)ei(x+iy) = (x+ iy)eix−y

= e−y(x+ iy)(cosx+ i sin x)
= e−y(x cosx− y sin x) + ie−y(y cosx+ x sin x).

(b) (8 points) Prove, using the Cauchy-Riemann equations, that f(z) is entire.
Solution
Let u = e−y(x cosx− y sin x) and v = e−y(y cosx+ x sin x). Then

∂u

∂x
= e−y(cosx− x sin x− y cosx),

∂v

∂y
= −e−y(y cosx+ x sin x) + e−y cosx = e−y(−y cosx− x sin x+ cosx),

∂u

∂y
= −e−y(x cosx− y sin x)− e−y sin x = −e−y(x cosx− y sin x+ sin x),

∂v

∂x
= e−y(−y sin x+ sin x+ x cosx).

Since all the partial derivatives are continuous for all x+ iy ∈ C, and the Cauchy-Riemann
equations hold, that is,

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

for all x+ iy ∈ C, we conclude that the function f(z) is entire.
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(c) (6 points) Compute the derivative of f(z).
Solution

f ′(z) = (zeiz)′ = eiz + izeiz = (1 + iz)eiz.

(d) (8 points) Prove that the function

u(x, y) = e−y(x cosx− y sin x),

is harmonic in R2 and find a harmonic conjugate of u(x, y).
Solution
The given function u(x, y) is harmonic in R2 because it is the real part of the entire function
f(z).
A harmonic conjugate for u(x, y) is then the imaginary part of f(z), that is,

v(x, y) = e−y(y cosx+ x sin x).

Question 2 (15 points)

Evaluate

pv
∫ ∞
−∞

eix

x2 + 1dx

using the calculus of residues.

Solution
By definition,

I = pv
∫ ∞
−∞

eix

x2 + 1dx

= lim
R→∞

∫ R

−R

eix

x2 + 1dx

= lim
R→∞

IR.

To compute this integral we consider the closed contour

ΓR = γR + C+
R ,

shown below.
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γR

C+
R

i

−i
R−R

We have

IR =
∫ R

−R

eix

x2 + 1dx

=
∫
γR

f(z)dz,

where

f(z) = eiz

z2 + 1 .

Therefore, ∫
ΓR

f(z)dz = IR +
∫
C+

R

f(z)dz.

For R > 1 we have ∫
ΓR

f(z)dz = 2πiRes(i) = π

e
,

where we used that

Res(i) = lim
z→i

(z − i) eiz

(z − i)(z + i) = lim
z→i

eiz

(z + i) = e−1

2i = 1
2ie .

Moreover, since the degree of the denominator is 2 and we have an expression of the form eiz

in the numerator we can apply Jordan’s lemma for C+
R to get

lim
R→∞

∫
C+

R

f(z)dz = 0.

Then taking the limit R→∞ we get
π

e
= I + 0,

giving

I = π

e
.
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Question 3 (10 points)

Use Rouché’s theorem to show that, if 0 < ε < 7/4, then the polynomial P (z) = z3 + εz2 − 1
has exactly 3 roots in the disk |z| < 2.

Solution
The functions f(z) = z3 − 1 and h(z) = εz2 are both analytic on and inside the circle |z| = 2.
The number of zeros of f(z) = z3−1 inside the disk |z| < 2, counting multiplicity, is N0(f) = 3.
Moreover, on the circle |z| = 2 we have

|h(z)| = ε|z|2 = 4ε,

and

|f(z)| = |z3 − 1| ≥ ||z3| − 1| = 7.

Therefore, we can apply Rouché’s theorem when 4ε < 7, which implies |h(z)| < |f(z)|, to get
for P (z) = f(z) + h(z) that the number of its roots inside the disk |z| < 2 is

N0(P ) = N0(f) = 3.

Question 4 (15 points)

Represent the function

f(z) = z

z2 − 1 ,

(a) (8 points) as a Taylor series around 0 and find its radius of convergence;
Solution

z

z2 − 1 = −z(1 + z2 + z4 + z6 + z8 + · · · )

= −z − z3 − z5 − z7 − z9 · · · ,

where we used the geometric series for 1/(1 − z2). The geometric series converges when
|z2| < 1, that is, for |z| < 1. Therefore, we conclude that the radius of convergence must
be 1.
Alternatively, the function f(z) has singularities at z = ±1 which are both at a distance
|z| = 1 from 0. Therefore, the radius of convergence is 1.

(b) (7 points) as a Laurent series in the domain |z| > 1.
Solution
Since |z| > 1, that is |1/z2| < 1, we have

z

z2 − 1 =
1
z

1− 1
z2

= 1
z

(
1 + 1

z2 + 1
z4 + 1

z6 + · · ·
)
.

Therefore, for |z| > 1 we can write
z

z2 − 1 = 1
z

+ 1
z3 + 1

z5 + 1
z7 + · · ·
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Question 5 (10 points)

Consider the functions

f(z) = sin z
z

and g(z) = e1/z.

Determine the singularities of f(z) and g(z), and their types (removable, pole, essential; if pole,
specify the order). Make sure to justify your answer.

Solution
The function f(z) is singular at z = 0. The Laurent series for |z| > 0 is given by

f(z) = 1
z

(
z − z3

3! + · · ·
)

= 1− z2

3! + · · · .

Since there are no negative powers we conclude that z = 0 is a removable singularity.
The function g(z) is singular at z = 0. The Laurent series for |z| > 0 is given by

g(z) = 1 + 1
z

+ 1
2!z2 + 1

3!z3 + 1
4!z4 + · · · .

Since there are infinitely many negative powers we conclude that z = 0 is an essential singularity.

Question 6 (10 points)

Consider a function f(z) such that Re(f(z)) ≥ M for all z ∈ C, where M is a real constant.
Prove that if f(z) is entire then it must be constant. Hint: consider the function e−f(z).

Solution
Let

g(z) = e−f(z).

If f(z) is entire, then so is g(z). Moreover, if we write f = u + iv, with u = Re(f(z)),
v = Im(f(z)), then we have

|g(z)| = |e−f(z)| = |e−u−iv| = |e−u| ≤ e−M .

Since g(z) is a bounded entire function we conclude from Liouville’s theorem that g(z) is constant
c ∈ C.
Therefore, e−f(z) = c. This implies f(z) = −Log c + 2k(z)πi, with k(z) a Z-valued function.
Since f(z) is continuous (being entire) we conclude that k(z) is also continuous. The only
continuous functions from C to Z are constant functions, therefore k(z) = K. Then f(z) =
−Log c+ 2Kπi is a constant function.
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